作者:卓嘉弘、張奕威、黃戴廷
半個世紀以來,半導體業依循著摩爾定律(Moore’s Law),透過製程不斷微縮來實現電晶體密度倍增的精進。
現在,先進封裝技術正成為超越摩爾定律(More than Moore)的決勝關鍵,例如3D堆疊(3D Integration, 3DI)可以降低電流導通阻抗、減少熱累積,具有增加晶片運算效能與使用壽命的優點,而3D堆疊所需要的晶圓薄化製程則是由化學機械研磨擔任重要角色之一,它可以在基板材料研磨薄化之後,消除研磨痕跡與殘餘應力[1]。
除此之外,化學機械研磨也可以在圖1的扇出型晶圓級封裝(Fan-Out Wafer Level Packaging, FOWLP)中,讓埋藏在模封材料中的銅接點裸露,並保有很好的表面粗糙度與線路重佈層(Redistribution Layer, RDL)連接[2],因此化學機械研磨設備的性能足以影響整個先進封裝的成敗。
在智慧(數位)製造大趨勢之下,透過In-situ檢測技術與製造端整合,監控設備製程參數並維持最佳化運作以提升製程效能與良率,並智慧預測研磨設備拋光墊的使用餘命,才能達到節能監控與零件更換管理的智能化系統。
圖1 CMP製程應用於FOWLP封裝[2]
化學機械研磨製程與量測技術
1.CMP製程
化學機械平坦化(Chemical Mechanical Planarization, CMP)技術亦可稱為化學機械研磨(Chemical Mechanical Polishing)技術,早期主要由IBM將此一技術用於矽晶圓的平坦化設備上,隨著摩爾定律的演進,半導體製程從最早期的180 nm、90 nm、…7 nm等,逐步演進至3 nm製程,由於線寬越小,表面精度則要求更高,因此CMP製程越顯重要,其技術製程如圖2所示,首先由上方管路將其化學研磨液(slurry)送進CMP腔體內,其研磨液主要由化學添加劑與懸浮粒子組成,透過承載台(wafer chuck)吸附晶圓並施加向下壓力,當接觸研磨液時,化學添加劑與晶圓表面產生化學反應,而懸浮粒子則是透過拋光墊(pad)的表面支撐來研磨晶圓。
當拋光墊表面粗糙度已不足以研磨晶圓時,便會透過修整器(conditioner)提高其拋光墊表面粗糙度。在實務上目前僅採用離線方法進行拋光墊表面量測,或者是在研磨完固定數量晶圓後進行制式化拋光墊修整動作,尚未有機上(in-situ)監控的回饋機制,在加工時效性與製程品質這兩項目,無法滿足智慧製造需求。
圖2 CMP製程示意圖
2.拋光墊離線(off-line)量測技術
目前CMP製程皆採用離線方式進行拋光墊表面量測,其方式有超音波量測[3]、接觸式探針量測[4]、核磁共振影像量測[5]如圖3所示等技術,主要透過量測拋光墊的表面形貌,進一步計算其粗糙度,再以粗糙度三維算術平均值(Sa)及粗糙度三維方均根值(Sq)作為評估之判斷依據。
倘若表面粗糙度低於標準值,則會透過修整器提高表面粗糙度,但離線技術須將拋光墊移開製程機台,因此不僅費時也耗費人力成本,即使勉強導入機上作業,也因為作業環境惡劣、拋光墊表面極為複雜、檢測速度趕不上的關係,讓原本量測的準確性與可實施性大打折扣。